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interface in a Hele-Shaw cell 
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We report observations of the nonlinear growth of an unstable interface in a large 
Hele-Shaw cell in which it is possible, in the most extreme case, to follow the 
emergence of a single ‘finger’ from approximately thirty initial wavelets. The larger 
‘fingers’ that emerge undergo further instability to form a highly contorted interface. 
We have measured a number of the averaged characteristics of this interface and can 
relate the various cases studied through length and time scales constructed from the 
independent parameters of the problem. We show that the most distorted interfaces 
may have a fractal dimension at scales larger than the instability wavelength and 
discuss the significance of this possibility. 

1. Introduction 
There has been a recent increase in interest in the problem of interface motion in 

a Hele-Shaw cell (see Tryggvason & Aref 1983, hereinafter referred to as TA;  Aref 
& Tryggvason 1984; Park, Gore11 & Homsy 1984; Park & Homsy 1984; McLean & 
Saffman 1981, among others) following the fairly steady advances in knowledge which 
resulted from the seminal papers of Saffman & Taylor (1958), Saffman (1959) and 
Taylor & Saffman (1959). This interest is motivated mainly by the anology to the 
flow of fluid in a porous medium as outlined particularily well in TA and Wooding 
& Morel-Seytoux (1976), with the most important practical situation being the 
attempt to displace oil in an oil field by pumping water into a secondary well. In  all 
of these latter papers, one of the more interesting observations concerns the 
emergence of a single, smooth finger of intruding, less-viscous fluid in the relatively 
narrow channels used in the experiments. My own interest is of long standing, having 
been first aroused when a student by the observation of ‘bubble competition’ and 
the eventual dominance of one or two of the growing wavelets in the dynamically 
similar case of Rayleigh-Taylor instability by a fellow student B. C. Watson, as 
published by Emmons, Chang & Watson (1960). Observations in a Hele-Shaw cell, 
reported here, (see, also, Wooding & Morel-Seytoux 1976 & TA for example) and in 
finger growth in a turbulent stratified fluid (Liu, Maxworthy & Spedding, 1985) have 
made it clear that the phenomenon is ubiquitous and deserves further study under 
the simplest possible circumstances where a great deal of experimental data can be 
extracted relatively accurately by elementary but labourious techniques. Also, in 
many situations where Rayleigh-Taylor instability occurs (e.g. inertially driven 
fusion experiments) there is considerable interest in being able to scale the growth 
rate of the nonlinear, unstable interface which forms. Despite extensive numerical 
calculations, there is still considerable uncertainty over the long-time behaviour of 
such interfaces. Experiments in this area are notoriously hard to perform owing to 
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FIGURE 1. Apparatus. 

the difficulty of observing the highly distorted three-dimensional interface. Use of 
a geometrically constrained system which forces the interface to  be essentially 
two-dimensional, as in a Hele-Shaw cell, allows one to gain insight into the properties 
of the nonlinear Rayleigh-Taylor instability by using a combination of numerical 
calculations and experiment in an interactive fashion, i.e. tuning numerical schemes 
against the two-dimensional Hele-Shaw experiments and then using them to calculate 
the experimentally less accessible Rayleigh-Taylor system. 

2. Apparatus and procedure 
The basic apparatus, shown in figure I ,  consisted of two 1.27 cm thick ‘float-glass’ 

plates spaced 0.21 cm apart and held in a wooden frame so that the working space 
was 61 x 120 cm. The cell could be rotated about its central, short axis and held at 
various pre-determined angles by supporting one end on a rod of known length. 
Several ports were drilled into the plates in order to fill the cell initially and to 
introduce other fluids, in experiments to be reported in future papers. 

The interface was visualized photographically by mounting a 35 mm SLR camera 
on a frame which was rigidly attached to the cell so that it rotated with it .  The cell 
was back-lit by projecting the light from photographic lamps onto a transluscent 
screen taped to  the back face of the cell. 

For the experiments to be reported here two immiscible fluids were used, a silicone 
oil, with nominal viscosity of 100 cs, and air. Clearly a large number of other possible 
combinations exist and the results of experiments using some of them will be 
presented in future publications. 

I n  our first attempts to look at  the stability of an initially plane interface the cell 
was filled a little more than half-full with the silicone oil. It was then rotated to  a 
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known angle ci (fig. 1 )  and with the heavy oil above. In this case, under all 
circumstances, the interface first became unstable at its two ends. This occurred 
because the menisci which formed there acted as very large perturbations while the 
transverse meniscus (i.e. that  which spans the narrow gap between the two plates) 
was extremely rigid and unyielding and had to be released in some way in order to 
obtain instability along the whole length of the interface. The most successful 
technique for accomplishing this was to pre-wet the glass plates with a thin oil film. 
Thus the preliminary experiment initiated above was allowed to continue so that the 
oil now filled the lower half of the cell. After about half an  hour most of the oil had 
drained from the plates leaving only a thin film behind. This procedure ensured that 
in all cases the interface contact angle was zero and that contact angle hysteresis was 
not involved in determining the stability properties of the interface. The cell was then 
rotated back to an angle a again with the heavy oil above, so that a distribution 
of instability waves was formed with a more-or-less uniform wavelength (figures 2a, 
3a) ,  allowed to grow, and then photographed. This procedure of tilting, draining and 
re-tilting was repeated six times for each angle of interest in order to obtain sufficient 
statistical information on a system which did not give exactly the same interface 
development in each test. In  particular the evolving fingers appeared to follow no 
preferred paths and there were no imperfections in the plates to form centres from 
which growth could be instigated. 

The fluid properties of significance, the surface tension T ,  kinematic viscosity v 
and density pl ,  were measured at the temperature at which the experiments were 
performed (21 "C) and had values of T = 21 .0 f0 .4  dynes/cm measured using 
a ring tensiometer, v = 1 . l l  fO.03 cm2/s using an Ostwald viscometer and 
p1 = 0.96 gm/cm3. It was assumed that the viscosity and density of the air were 
insignificant compared with those of the oil. 

3. Theory 
Here we follow the linear theory developed by Saffman & Taylor (1958), among 

others, in order to present the scaling laws that appear to be relevant to our problem 
and which help to explain some of the nonlinear phenomena that we have observed. 

If one considers that  stability of a plane interface between two immiscible fluids 
to two-dimensional disturbances under the influence of an imposed pressure difference 
which produces a uniform intcrfacial velocity V ,  and gravity, then the growth rate 
u of these perturbations is given by 

where L is the wavelength of the disturbance, b the width of the gap between the 
plates, T the surface tension between the two fluids, ,a the fluid viscosity and p the 
fluid density, while the subscripts 1 and 2 refer to the upper and lower fluids 
respectively. Here it has been assumed that the pressure drop across the interface 
is given by T(2/b+ l / R ) ,  where R is the radius of curvature of the interface projected 
onto the plane of the plates. There has been a great deal of discussion in the literature 
concerning this assumption especially in view of the known variation of the interface 
transverse curvature (i.e. that  across the gap between the plates) with capillary 
number Ca = V p / T  as calculated to first order in Park & Homsy (1984) and Park 
et al. (1984)' These possibilities are mentioned again later when we discuss our results 
( § 5 ) .  
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Case a L*(cm) V*(cm/s) t*(s) B* 

v 90" 1.62 2.38 0.68 0.026 
A 16.4' 3.05 0.67 4.54 0.05 
B 11.1" 3.70 0.48 7.75 0.061 
C 5.8" 5.13 0.24 21.5 0.084 
D 3.1' 6.91 0.13 52.9 0.110 

TABLE 1.  Parameters of the five cases studied 

From (1)  i t  is apparent that  the effect of surface tension is to  limit the range of 
unstable disturbances to those with a wavelength greater than 

L, = 27tflb (12 V(p1 -pz)  + b2g sin a(pl - p 2 ) } - i ,  (2) 

while the amplification factor u is a maximum for a wavelength L*, equal to 4 3  L,. 
This can then be used as a representative lengthscale in the data presentations which 
follow. 

As a velocity scale we use ( 1  ) rearranged as 

where u* = m - P z ) + b 2 g  sina(p,-p,) 
P1 +PZ 12@1 +PZ) . 

Then a suitable timescale t* is given by L*/U*. While the quantities given above 
are of primary importance to the presentation which follows one other important 
parameter appears as the result of some elementary physical considerations based 
upon the experimental observation of the continued instability and distortion of the 
few long, wide 'fingers ' which evolve from the large number of initially unstable waves. 
The lateral growth of these .fingers is apparently constrained by the presence of the 
sidewalls and so one would suspect that  the ratio L*/ W (where W is the width of 
the cell (figure 5 ) )  would be important in quantifying the ability of the fingers to 
support further instability. 

This quantity, 

has the same form as the quantity & of TA and is closely related to  the parameter 
Ci of Park & Homsy (1985), i.e. B*2 = 118.4B and B*2 = 2.47 Ci-I. For future 
reference, we note that  the commonly used capillary number Ca = V p / T  is related 
to B* by B*2 = 9.87(b2/W2) (l/Ca). 

4. Results : observation of interface evolution 
We consider five cases in detail with angle a varying from 90" to 3.10". A full 

tabulation of the relevant parameters is given in table 1 .  These angles were chosen 
so that L* increased by approximately 1.5 cm from case to case. It is our objective 
to find useful measures of interface evolution and to see if they scale in a meaningful 
way; some of these have already been discussed in TA and others are trivial 
extensions of them. These measures will be discussed in detail in $$4.1 and 4.2. In  $4.4 
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FIQURE 2. Photographs of the nonlinear development of the interface for a = 90°, case V1. 
Time increases from (a)  to (d). 

we introduce the concept of the fractual dimension of the interface as discussed in 
general by Mandelbrodt (1983), and in case similar to ours by Nittman, Daccord & 
Stanley (1985) among others. 

4.1. Measurements of the emergence of a single finger 
In figures 2 and 3 we show photographs of the complete and typical evolutionary 
history for two extreme cases (V and D) from the thirty sets of photographs taken 
and measured in detail. 

For the vertical orientation (case V) a large number of small waves were formed 
at first but the growth of many of them was suppressed at early times so that the 
final stages were dominated by the growth of only three of the original wavelets with 
the central one ultimately out-growing and stopping the growth of its two neighbours. 
This process can be understood qualitatively by considering the unsteady flow field 
generated by the field of fingers in which one grows slightly larger than its neighbours. 
The flow created by this larger finger is such that it opposes the motion of these 
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FIQURE 3. Photographs of the nonlinear development of the interface for a = 3.1°, case D. 
Time increases from (a) to ( d ) .  

neighbours so that they eventually, and sometimes very abruptly, stop growing 
(figure 4). This can be seen on rearranging (1) where we note that the gravitationally 
unstable interface can always be stabilized if the imposed interface velocity V exceeds 
-g(pl - p z )  b2 sin 01/12(,u, -,uz), which certainly occurs in the cases considered here. 
Note, however, that as (,uu,-p2)+0 the magnitude of V required to stabilize the 
interface becomes large and no stabilization takes place, as noted in TA’s calculations 
and the experiments of Maher (1985). This process was first discussed casually by 
Saffman & Taylor (1958) and has been observed in a number of similar situations, 
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FIGURE 4. (a) Unsteady streamlines of a uniform field of growing wavelets. (b) When one wavelet 
becomes larger than its neighbours, owing to non-uniform initial conditions, it  creates an unsteady 
flow field which opposes the growth of these neighbouring perturbations. (c) In  the limit where the 
central wave, in this case, has become very large, the opposing flow is uniform and in a stabilizing 
direction (see (1)). This can and does suppress the growth of the smaller waves as can be seen clearly 
for the smaller waves of figure 2, for example. 

e.g. finite-amplitude Rayleigh-Taylor instability (Emmons et al. 1960) and finger 
growth in a stratified fluid (Liu et al. 1985). 

Ideally this process can be quantified, somewhat laboriously, by plotting the length 
of each individual disturbance (see figure 5 )  as a function of time t. Unfortunately 
at  early times the number of growing waves was decreasing so rapidly that only a 
few points could be plotted. From such a plot (figure 6) i t  was possible to decide at 
what time each finger stopped growing. Thus, initially, all the waves (N) grew : after 
a short time t ,  one stopped growing and only N -  1 waves were growing. This process 
was repeated for all subsequent wave suppressions so that the (N-n)th wave 
stopped growing at  t,. A plot of log(N-n) W/L*  versus logt,/t* yields a straight 
line of large negative slope (figure 7)  with only one finger still growing after t,/t* x 10, 
for our particular cell. This cascade of energy to a smaller number of fingers, which 
then grow in width and hence to a larger scale, is very reminiscent of the upscale 
transfer of energy associated with the -8 law of two-dimensional turbulence and was, 
in fact, one of the motivations for studying the present problem. However it is now 
clear that the physical mechanisms involved are quite different, as will be discussed 
in $5. 

Similar processes can be seen in figure 3 for case D where a = 3.1O. The initial 
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FIGURE 5. Definitions of the various quantities used in the data reduction. (a )  8 is the maximum 
length of any individual finger; 8 the maximum width of the distorted interface, is the maximum 
length of the interface using a map measurer (see 54.4.1). ( b )  The density function p(y) is found 
by adding the width of each individual air finger at a specific value of y and dividing by W ,  a process 
which is repeated for many values of y. The width of the interface O,, is that between (Z Li)/ W = 0.1 
and 0.9. 

instability had a much larger wavelength and a single finger emerged very rapidly. 
I n  case V the fingers underwent many further instabilities and bifurcated many times 
into two or three new fingers; in case D was not the case and only a weak secondary 
instability could be seen. We postpone measurement and discussion of this process 
until later ($54.3 and 5). 

Also, a measurement of the initial number of waves N when divided into the width 
of the cell W gives an experimental measure of the initial instability wavelength. Since 
we wish to concentrate on the nonlinear behaviour of the interface and since similar 
measurements have been repeated extensively in the open literature (see Park et al. 
1984 for a good discussion) we refrain from presenting them in detail here, except 
to not i tha t  the measured values were typically 10-15 yo larger than the calculated 
values (e.g. on figure 7 the first point representing the initial instability occurs for 
NL*/ W = 0.85). We believe that this is because it took a finite time to rotate the 
cell to  the required angle and hence the interface began to grow, and even reached 
finite amplitude for cases V and A, under the action of a gravitational force that was 
variable and less than the final value. We are convinced, however, that  this had no 
effect on the long-time, nonlinear growth which always took place with a constant 
gravitational force. It is possible, also, that an inaccuracy in measuring the gap width 
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FIQURE 6. (a) Growth of the individual fingers (e versus t )  shown in ( b ) .  

b could account for some of the difference but that inaccuracies in measuring the fluid 
properties could not. 

4.2. Measurements of interface width 
One of the more practical implications of the processes shown in figures 2 and 3 is 
a measure of the width of the cell, in the y-direction, which has been contaminated 
by the growth of the interface. This is important first because i t  gives a quantitative 
indication of the time i t  takes for the lighter, less viscous fluid to reach the end of 
the cell and hence becomes less effective in displacing the more viscous fluid, in the 
situation of greatest practical importance (see 5 l ) ,  and secondly because it determines 
the long-time behaviour of the interface into a parameter range where calculations 
have not extended so far. 

This process can be characterized in several ways, as outlined in figure 5 where we 
define several measures of interface distortion and growth. Two integral widths can 
also be defined ; eA = &it/ W is the sum of the areas of all air fingers above the initial 
interface position divided by W; 0, = Cat W is the sum of the oil-filled areas below 
this line, divided by W. Three of these, 1, p ( y )  and L, have already been used by 
TA while the others, 8,  O,, 6, and e,, are trivial extensions. Of primary interest 
is the total maximum interface width 8. Raw-data plots for three cases are shown in 
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FIGURE 7. Characterization of the emergence of a small number of large fingers at experiments 
progress. For cases V1 and V2 we plot ( N - n )  L*/W versus t, /t*.  

figure 8 for the six individual realizations of each case. The averaged result for 
each case is shown as a solid line. Representative points from these averaged curves 
are plotted in non-dimensional fashion on figure 9 for all five cases. We see that, 
except for the most distorted interface for the smallest value of B* (table 1, case V), 
all of the cases can be reduced to a single curve using 

as the characteristic length and time scales respectively (see $3).  We suspect that 
this change in behaviour with decreasing B* occurs continuously, but rapidly, over 
a small range of B*. Unfortunately our strategy for choosing values of B*, or a, for 
study did not include the possibility of such a rapid change. I n  future studies we plan 
to look at this effect more carefully. 

Certain integral measures of the interface width can also be constructed as outlined 
above and on figure 5. If on any particular photograph, we draw a straight horizontal 
line representing the original position of the interface, then the sum of the areas A,  
of the air fingers above this line. when divided by the cell width W ,  gives a measure 
of the half-width of the interface O A .  If, in a similar fashion, we sum the areas of oil 
penetrating below the original interface position ui and divide by W then a second 
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FIGURE 8. Maximum interface width 4 versus time for cases V, A and C. In each case the 
curves represent the average of six individual experiments. 

integral width 0, results. Any difference between the two values measures the average 
thickness of the oil film t left behind as the air penetrates upwards, i.e. 

Volume of air displaced above datum line 
= CAt(b -2 f )  = bZ a( = Volume of oil below datum line. 

Thus 

Unfortunately it did not prove possible to measure this difference in area with 
sufficient accuracy to  determine the film thickness, as can be seen from a careful study 
of the results of the measurements of eA and 0, displayed on figure 10. 

The final measure of the interface width, O,,, (figure 5b)  is virtually identical with 
8, except at early times, and scales in the same way (figure 11). However, the 
technique used to find i t  gives useful information about the relative distribution of 
oil and air within the interface, in fact the results can be considered as a measure 
of the density distribution p within the interface or alternatively the probability of 
being located in an air finger at any particular value of y. These distributions were 
found by drawing straight horizontal lines, Li,  a t  various y-stations within the regions 
filled with air. These lengths at a given value of 4 were then summed and divided 
by W to give the density, p = Z L,/ W (figure 5b) .  Plots of p at approximately-the 
same dimensionless time, are given in figure 12 ( a d )  for the six realizations of each of 
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FIGURE 9. Averaged non-dimensional maximum interface width versus non-dimensional time 
for all five cases. 

the cases A-D, while the resulting estimated averages are replotted on figure 13. Of 
major interest is the similarity of the curves and the fact that the cell has only slightly 
more air than oil over its central half, a result which is very reminiscent of the findings 
of Saffman & Taylor (1958), among others, who found for single smooth fingers 
created by injection into a horizontal cell that the cell was half filled with air for large 
values of a parameter equivalent to our B* and a capillary number V p / T .  The con- 
sistent rise in the proportion of air at large values of yle,, around 0.9, i.e. towards the 
oil-filled side, is also of interest and has no counterpart in the single, smooth-finger 
experiments. This effect appears to be due to the bulbous nature of the generated 
fingers and is consistent with the numerical results of TA. G .  Tryggvason (private 
communication) suggests that this effect is enhanced in numerical calculations if one 
assumes a dependence of the pressure drop across the interface on interface velocity, 
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FIQURE 10. Integral measures of the interface width BAIL* and BJL* versus t / t * .  BAIL: V, 
cam B;  0,  case C; A, caae D. BJZ: 0,  case B;  +, case C; A, case D. 

but a quantitative assessment of this suggestion is lacking at the moment. It is 
also of interest, for our discussions later, that at  longer times the shape of the 
p-distribution does not change very much with time. This we show as figure 14 where, 
for case A, p-distributions are plotted at different non-dimensional times. 

The p-distributions for case V (figure 15) also show the marked difference between 
this case and cases A-D noted previously. The value of p in the centre of the cell is 
markedly lower than the value for the other cases and no rise in value is found for 
large values of y/8. Such values of p are also typical of the single-finger results with 
values of p < 0.5 that were found recently by Tabeling, Zocchi and Libchaber (1986) 
at large Ca. 

Finally, we note that all of the measurements of interface width tend to a slope 
of unity at large times, a result which is also consistent with the pumped-interface 
results of many authors on the growth of single fingers. However this result is 
somewhat clouded by the fact that at these larger times the fingers were approaching 
the end of the cell and therefore could have been affected by its presence. A t  early 
times the growth rate d8/dt appears to  scale approximately as d, i.e. 8 - t1.5. While 
linear stability results would lead us to expect an exponential growth at  early times, 
the first points of figure 9 already represent an amplitude of about half a wavelength, 
so that they are well outside any linear stability range. Under these circumstances 
an algebraic growth with time is not surprising. This result is close to that found by 
Maher (1985) in the same range of t / t * ;  in fact Maher’s result of 8 - t l .s  is well within 

8 FLM 177 
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FIGURE 11 .  Interface width OJL* versus t / t * :  0 ,  case A ;  +, case €3; 0, caw C; A, cam D. 

the experimental scatter, while both have a considerably lower exponent than that 
found by TA. 

4.3. Measurements of the interface length 
For these measurements the photographic negatives were projected to one-third full 
size and the infacial outline traced. The interface lengths were then found by running 
a standard ' map-measurer ' around the interface and converting to full-scale units 
by multiplying by measured coefficients. The average results for each case can be 
presented in several different ways. Following TA we plot (E-W)/W versus t/t* in 
figure 16, which shows a consistent trend with decreasing B* from case A to case D 
and a tendency to a linear growth with time at longer times. As with the 
measurements of 8, case V appears to be quite anornolous, while even the cases A-D 
do not reduce to a single curve, as in TA, for example, suggesting that the more 
distorted interfaces we have observed are different from those found in the existing 
numerical schemes. Alternative ways of plotting these results, which show similar 
trends, are displayed in figures 17 and 18. Both figures reinforce, in particular, the 
different behaviour of case V, while even the cases A-D which are reasonably close 
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to  each other will still show a definite ordering with L* or alternatively, and probably 
more appropriately, B*. I n  figure 17, we have also plotted L/L* versus t / t *  for case 
V since this appears to  have some relevance to the results that follow [$4.4.1.] and 
the discussion of $5. 

4.4. Measures of interface distortion 

4.1.1. Interface dimension 

It is evident from even a casual scrutiny of the photographs displayed in figures 
2 and 3 that  as each major wave or finger emerged from its neighbours it underwent 
further instability or splitting usually, but not always, a t  the ‘finger-tip’. When B* 
was small the secondary fingers that  were then formed could undergo a further 
splitting, a process that could be repeated several times more for the smallest values 
of B* (cases V, A and B in our experimental range). 

It appears that  this higher-order splitting has important consequences, especially 
for the measurements of interface length reported in $4.3. Such measurements are 
significant since the interface length represents the distance over which molecular 
reactions could take place if the two interpenetrating fluids were chemically active, 
so that this length becomes a measure of the reaction rate. 

While i t  is easy to  view an interface and make a qualitative statement about its 
relative state of distortion it is not so easy to quantify such comments. Research 
on related topics (Mandelbrodt 1983) suggests that  one possible way to  characterize 
the interface distortion quantitatively is to measure, or at least attempt to measure, 
its dimension. We report such measurements here and although the results are not 
entirely unambiguous they do suggest that the concept may have some validity under 
some circumstances. We consider only a few cases in detail. Since case V seems to 
hold the most interest we present analysis of two runs from this sequence each of 
which had a different development. The first, which evolved clearly into a single 
branched finger (figure 2),  we designate case V1. The second evolved into two fingers 
which grew at the same rate during the total period of observation (case V2). For 
these we consider a complete time history, while for the other cases (A-D) we present 
results for the final state only. 

One can measure the interfacial dimension by stepping around a projected image 
of the interface with a pair of dividers set to a known distance, which we call the 
gauge length G. The number of steps ?y required to fit the interface when multiplied 
by G gives the interface length L, a t  that  value of G. This process is repeated for 
various values of G and the results plotted logarithmically. If the resulting line has 
a constant negative slope ( - n)  then the dimension of the interface D is (1 + n) .  One 
such plot is shown in figure 19 for the case V2. We note that at all times the curves 
quickly assymptote their values for G = 0 for G-scales approximately smaller then 
L*. Only the curves for longer times, i.e. the most branched and distorted interfaces, 
have an  extensive region of straight negative slope for values of G from L* to about 
1OL*, with rapid variations in L,  at larger G-scales. This is similar to results found 
under other, related, circumstances (Nittman et al. 1985, for example) and reviewed 
in Robinson (1985). At the shorter times the curves are definitely oscillatory and 
although one can draw straight lines through them the resulting values of the slopes 
probably have little significance. These results suggest that  the interfaces may have 
a fractal dimension (D = 1.44 for case V1 and D = 1.37 for case V2) but that  i t  only 
exists for a limited range of scales. We suspect that this range may be extended to 
larger values of G by allowing a longer time of evolution and mdny more finger 
bifurcations in a larger cell. It clearly cannot be extended to scales smaller than 

8-2 
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FIGURE 12(a ,b ) .  For caption see facing page. 

approximately L* since surface tension prevents smaller scales from forming. An initial 
report of this result has been given in Maxworthy (1985). The precise significance of 
these results is hard to  assess a t  the moment. It may be coincidental that the length 
of the interface L̂  (see figure 17)  grows a t  a power of time, 1.37, close to the values 
of D for these cases, so that a clear-cut region of straight negative slope may in fact 
distinguish the very different behaviours of the vertical cases from those where such 
a region is not quite so evident. The comments of Aref & Tryggvason (1984) 
concerning the unlikely appearance of fractal forms in this case do not seem to be 
borne out by these and similar experiments. 

Other measurements bear out this possibility. If we plot log L ,  versus log G for 
cases A-D for the latest times and hence most-distorted interfaces even case A, which 
to the naked eye has a quite complex shape, has no clear-cut region of straight 
negative slope, while the interface length grows approximately linearly with time. 
Cases B-D have quite oscillatory log A,-log G curves and slopes of the curves of 
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FIQURE 12. Density distribution p = (Z L,)/ W versus y/OP for cases A-D for six experiments 
in each case. (a) case A, t/t* = 2.0; ( b )  B, 2.6; (c) C, 2.5; (d) D, 2.1. 

interface length are considerably less than unity. We propose a discussion of these 
and other matters in $5. 

4.4.2. Area-length relationships 
Mandelbrodt (1983) suggests that in a system of fractal dimension there are certain 

useful relationships between area and length that should be observed. In figure 20, 
we present such relationships for case V1 (figure 2). Here interface length 8 and width 
4 are as discussed before (figure 5 ) ;  the area, however, is different, being the total 
area of the air space above a line drawn through the lowest extremities of the 
interface. 

For small times the results of figure 20 suggest that the interface is one-dimensional 
and similar since A - L2. However, the long-time results are consistent with our 
previous observation that the effective horizontal extent of the intruding air fingers 
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FIGURE 14. Comparison of the averaged p versus y/B, curves for different times for case A. 

is approximately constant a t  a little under 50 yo of the total width of the cell W ,  figure 
15. This area must eventually grow linearly with the characteristic length dimension 
8 since 

A = w p(y)dy = wpP z const 8 .  Jo8 
We suggest that this is probably due to the highly constrained flow produced in 

these experiments which quickly fclt the effects of the sidewalls and produced a 
constant distribution of p and value of j5. 
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FIGURE 15. p versus y/8 for case V, average of seven experiments. 

Mandelbrodt's (1983) results would require that A * 19.~~. Since the exponent 
varies from 2 to 1 in figure 20, such a region clearly exists for a short period of time, 
but is quickly dominated by the sidewall effects mentioned previously and cannot 
be considered significant. 

5. Conclusion and discussion 
We have run a series of experiments on the gravitational instability of an oil-air 

interface in a Hele-Shaw cell. We have shown how ultimately one of the initial 
instability wavelets grows to completely suppress the development of all the other 
waves and have attempted to quantify this process in a physically reasonable way 
by determining the times at  which the various waves, which make up the initial field, 
are forced to stop growing by their larger neighbours. As mentioned briefly in §4.1., 
the growth of a smaller number of larger and larger scale features as time progresses 
is reminiscent of the upscale transfer of energy characteristic of two-dimensional 
turbulence, where a - spectrum can be justified theoretically. Unfortunately the 
present system probably fails as a useful analogue because of the entirely different 
physical processes involved. In  the present case, as outlined in figure 4, the large scales 
grow by suppressing the growth of their smaller neighbours so that the small 
scales then exist virtually unchanged until the end of the experiment, and the two- 
dimensional motion it represents contains no vorticity. On the other hand, in the case 
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FIQURE 16. (t- W ) / W  versus t / t *  for all cases. 

of two-dimensional turbulence large vortices grow by entraining their smaller 
neighbours (Caperan & Maxworthy 1985) so that eventually all the vorticity is 
contained in a large vortex and the smaller-scale eddies disappear as separate entities. 

One of the more interesting consequences of the dominance of a few long, wide 
fingers that tend to fill about half of the width of the cell is that they can become 
so large that they, in turn, can become unstable to a combined gravitational- 
displacement instability. Here, not only is the gravity field destabilizing, but the fact 
that the less viscous fluid (air) is displacing the more viscous (oil) means that the 
growth rate of any secondary perturbation is enhanced (equation (2)). In fact for 
typical parameter values for case V the contribution of the first term in the bracket 
of (1) is two to  three times larger than the second. We assume that the transverse 
curvature of the surface with a sign opposite to that with which the instability grows 
has some non-negligible effect on both the growth rate and instability wavelength, 
but this effect has not been calculated theoretically, although some numerical 
(DeGregoria & Schwartz 1986) and experimental (Park & Homsy 1985) work has been 
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FIGURE 17. (z- W)/L* versus t / t*  for all cases, and, x/L* for c a m  V. 

carried out on this problem. That this curvature effect is important can be estimated 
as follows, again for case V. For gravitational instability alone L* = 1.6 cm (table 
l) ,  but this value is reduced to about 0.8 cm based on a typical, measured finger 
velocity and using (1) for a plane interface. The observations show that the fingers 
undergo an instability a t  a wavelength not too different from the original value L*. 
This suggests that the curature of the finger tip has a stabilizing effect and increases 
the wavelength of instability over that found for a flat interface under otherwise 
identical circumstances. 

The fact that highly bifurcated interfaces, such as ours, have not been seen before 
can be explained by observing that our values of B* are substantially smaller than 
those previously considered. Thus, Saffman & Taylor (1958) experimented at values 
greater than about 0.24 (but see comment below) and Park et al. (1984) at values 
larger than 0.14. More recently Park & Homsy (1985) have found instability for 
values smaller than about 0.15, where they observe the start of a tip-splitting process. 
Tabeling et al. (1986), have found instability for B* < 0.13, with a measurable 
sensitivity to the homogeneity of the gap b. Maher’s (1985) minimum value of B* 
was about 0.22 and he found no instability. Comparison with the results of TA 
shows that two of their figures (3f and 4) have a value of B* = 0.15 and should be 
stable; on the other hand their figure 7 has a B* = 0.036 and should show some 
sign of higher-order instability, but it does not. DeGregoria & Schwartz (1986) find 
instability at B* x 0.17 but suggest that instability could occur a t  even larger 
values if the initial distortion of the interface is large enough. Such ramified structures 
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FIGURE 18. ( A -  W ) / L *  versus OIL* for all cases. 
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FIGURE 19. Interface length as measured with a certain gauge length G versus the value of 
G itself for case V2 at various times during the evolution of the interface. 
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FIQURE 20. Area-length relatjonships for case V1. 

have also been found by Liang (1985) in numerical simulations for small T. In  our 
case, fingers grow to such a large size that at small B* their dimensions easily exceed 
any modified value of L* and further instability is possible. This explanation is 
further enhanced by noting that the effective modified value of B* for our rapidly 
growing, large-amplitude fingers is smaller by a factor of about two than the values 
calculated in table 1 for gravitational instability alone, when the measured velocity 
of finger advance is used. Finally, a careful reading of Saffman & Taylor (1958, page 
323, last two lines), suggests that  they saw such instabilities too but chose not to 
pursue their study in depth. 

The growth of the width of the distorted interface has been measured as has the 
change in interfacial length. I n  both cases i t  appears that  the most distorted 
interfaces, for the smallest value of B*, behave differently from the other cases, which 
appear to scale with L* and t * .  We have attempted to quantify this difference by 
calculating the dimension of the interface and find that a fractal dimension of about 
1.4 can be assigned to  the most distorted interfaces but only for scales larger than 
L*. For the other cases, the existence of a fractal dimension is doubtful and this is, 
we suspect, is the reason for the different behaviour of the interface in these cases. 
Recently Nittman, et al. (1985) have calculated the fractal dimension of a physically 
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similar system to the one we present here. I n  their case, through careful choice of 
the intruding fluid, they were able to produce an interfacial instability for which L* 
was very small. The highly distorted and branched interface they have photographed 
had a fractal dimension of 1.36, close to the value we have calculated for the same 
value of B*. The present results suggest that one might use the concept of the fractal 
dimension to learn something about the interface evolution. In  particular, there is 
some evidence to suggest that  the interface length grows with time to a power equal 
to the dimension. If this result proves to be true under further scrutiny i t  would 
constitute a powerful and useful result which could, hopefully, be extended to 
higher-dimensional systems since i t  is directly related to the area over which a 
reaction would take place in a cell containing reacting fluids. For reasons that 
probably have to do with the laterally constrained nature of the present experiments, 
the area-length relationship presented by Mandelbrodt ( 1983) is obeyed only over 
a restricted range. This can be explained by noting that the dimensionless density 
distribution p within the interface region does not change much after a short time 
and hence that the area of the intruding air ‘fingers’ must be linearly related to the 
width of the interface 8 ($4.4.2) Thus similarity arguments, on which Mandelbrodt’s 
results depend, do not hold a t  long times. 

The theory and virtually all of the experiments presented here have been 
interpreted as if the interface were a simple discontinuity across which there was a 
jump in pressure, as given in $3 or as modified by by Park & Homsy (1984). I n  reality 
the conditions at the interface are far more complex, being the result of balance 
between viscous V ,  surface-tension S, inertia I and gravitational G forces. A simple 
dimensional analysis reveals that  under most circumstances I can be ignored, i.e. 
Re = Vb/v 4 1. Generally G has been ignored in previous work also, but, in fact, 
G / V  = ( g A p / p )  (b2/  Vv)  is large and CIS = Apgb2/T is order one, typically, where Ap 
is the density jump across the interface. Finally V / S  = V p / T  = Ca, and this has been 
considered as the major control parameter. I n  particular the thickness of the film left 
behind on the plates should depend strongly on Ca (see Reinelt & Saffman 1985 for 
a recent discussion) and we suspect that  some dependence on gApb2/p  Vv will be found 
in detailed future measurements. It is also likely, for the types of curved interface 
found in these studies, that  this film will have a variable thickness across the width 
of a finger-like intrusion. It has been suggested that i t  is, in fact, the normal velocity 
a t  a curved interface V ,  that  should be used to calculate a modified or local 
Ca, = V ,  P I T .  That this cannot be entirely correct can be deduced by noting that 
the observed film thickness does not go to  zero at the sides of fingers where V ,  = 0, 
a t  least for the relatively large values of Ca considered here. However, recent 
experiments by Tabeling & Libchaber (1986) show such a variation in thickness for 
Ca < 3 x upon assuming that the film thickness is zero when V ,  = 0. I n  our 
experiments with many fingers all growing at different rates the local values of Ca 
cover a wide range, from essentially zero to 0.3 for the fastest moving fingers. This 
variation and the concomitant variation of film thickness accounts for the streaky 
nature of the film observed visually and in the photographs of Maxworthy (1985). 
In  turn this means that the interfacial boundary conditions must vary along the 
interface, a state of affairs that  has not been considered theoretically, except to  first 
order (Park & Homsy 1984), but must be characteristic of any experiment. The 
importance of this in determining the stability of the interface is presently the centre 
of much debate and while the present experiments do not address this question 
directly they do provide a point of view from which to attack this problem in the 
future. 
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One can also observe in figure 2, and Maxworthy (1985), a number of filamentary 
structures evolving with the ratio of their width to b of order one, within which 
three-dimensional effects must be important and which sometimes rupture. These are 
invariably relatively passive structures and do not contribute to the major dynamical 
properties of the interface which are controlled by the growing fingers and the 
superimposed perturbations, all of which are at least an order-of-magnitude wider 
than the cell gap width. The filaments have their counterparts in the calculations of 
TA but there, of course, no algorithm to allow rupturing is incorporated. There are 
also regions where adjacent interfaces combine to form a new surface alignment, an 
effect which has not yet been incorporated into existing numerical schemes. 

The help of J. Puddington, W. Haby and A. Bleeker in gathering and analysing 
the present data is gratefully acknowledged. The work was supported by the Fluid 
Dynamics and Oceanography Branches of the ONR. 
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